山东公务员

首页 > 山东公务员 > 阅读资料 > 行测 >

2023山东公务员考试行测数量关系:均值不等式巧解利润最值问题

临沂中公教育 2022-09-11 14:55:28 中公在线咨询在线咨询

2023年山东省考考试备考进行中,为方便考生更好报考,临沂中公教育小编特整理:2023山东公务员考试行测数量关系:均值不等式巧解利润最值问题。预祝大家考试顺利!


利润问题是行测考试中数量关系部分的一种题型,这种题型中有一类考点,即求利润的最值,此类题目在求解过程中往往会出现一元二次函数,如何简便快速地求解一元二次函数的极值,下面中公教育就为大家介绍一种方法,即利用均值不等式来求解。

均值不等式的一种表达形式如下,

如果a、b均为非负实数,那么当且仅当a=b时,等号成立。

由上述表达式,我们可以得到如下结论:已知a、b均为正数,若a+b为定值,则当且仅当a=b时,ab取得最大值。

示例

已知x>0,y>0,且2x+5y=20,则xy的最大值是多少?

在这道题目中,2x相当于a,5y相当于b,则a+b=20,是定值,所以当且仅当a=b,即2x=5y时,2x×5y存在最大值,因为2x=5y且加和等于20,所以2x=5y=10,求出2x×5y=10xy=100,即xy最大值为10。

 应用 
例1

某商场销售一批名牌衬衫平均每天可售出20件,每件盈利40元。为了扩大销售增加盈利尽快减少库存,商场决定采取适当的降价措施,经调查发现如果每件衬衫每降价1元,商场平均每天可多售出2件,每件衬衫降低( )元时,商场每天盈利最多。

A.12 B.15 C.20 D.25

答案选B。接下来通过本题的解析我们梳理此类题目的解题思路:

(1)找等量关系,列方程。

本题所求为利润最值问题,结合条件可以得出等量关系:总利润=单件利润×销量。分析可得如果售价下降1元在成本不变的情况下利润即下降1元,同时销量会增加2件,这道题可以设每件衬衫的售价下降了x元,商场的总利润为y元,那么可列出方程y=(40-x)×(20+2x)。

(2)凑配定和,求极值。

y=(40-x)×(20+2x),由前面学习的均值不等式的结论可知,要想求两部分乘积的最大值,需要这两部分的加和为定值,而我们会发现40-x和20+2x的加和并不是常数,所以不为定值,那么就需要未知数在加和后抵消掉,则可将方程变形为y=2×(40-x)×(10+x),此时40-x与10+x的和为定值,所以当且仅当40-x=10+x,即x=15时,y存在最大值,答案为B。

例2

某宾馆有50个房间供游客居住,当每个房间定价为每天180元时,房间会全部住满,当每个房间的定价每增加10元时,就会有一个房间空闲,问房价为多少元时宾馆利润最大?

A.260 B.280 C.300 D.340

【答案】D。中公解析:总收入最多则利润最大,所以需要求出总收入的最大值,通过题干条件可得等量关系为:总收入=房间单价×入住房间数量,房价增加会使入住房间数减少,此时可设房价增加了x个10元,总收入为y元,可得y=(180+10x)×(50-x),想求两个部分乘积的最大值,需要使两部分加和为定值,可将方程变形为y=10×(18+x)×(50-x),当且仅当18+x=50-x,即x=16时,y取最大值,此时每个房间的价格为180+10×16=340元,故答案为D。

通过上述例题我们可以发现,利润最值问题采用均值不等式的思想来求解是非常简单的,希望同学们能够多看几遍,充分吸收,做到熟能生巧、举一反三。

 猜你喜欢

查看更多

 大家都在看

备考公开课
山东公职类备考公开课
点击查看

山东公务员<

招考信息

考试公告 职位表 考试时间 报名入口 缴费确认 准考证打印 考务安排 成绩查询 分数线 面试名单 资格复审 体检体测 递补公告 录用公示

报考指导

报考指南 报名人数

阅读资料

综合指导 行测 申论 面试 时事政治 经验分享 公安基础知识

考试题库

行测 申论 面试 公安基础知识

各项目入口一键直达<